
VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

28
28

A Review On Cross-Site Scripting Request Forgery

Attacks And Its Defense Mechanisms

Dr. Purva N. Desai
Assistant Professor

M. B. Patel Science College, Anand.
dr.purva.desai@gmail.com



29VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

29

Abstract:
In today's world, the Internet has become an essential and highly advanced technology,

thanks to the use of various electronic devices. The wide range of online services provided by

the Internet has greatly contributed to the progress of human civilization, to the extent that

life without the internet seems inconceivable. However, the omnipresence of the Internet has

also attracted the attention of hackers and attackers, who constantly seek new techniques to

exploit vulnerabilities in web applications. According to researchers and industry experts, one

of the most significant vulnerabilities found in web applications is Cross-Site Scripting (XSS).

This type of attack involves injecting malicious code into a website, which can have

detrimental effects on its victims. This paper focuses on two subcategories of XSS attacks:

Cross-Site Scripting Redirection and Cross-Site Request Forgery. This study will highlight

the significant impact of CSRF attacks on web applications and provide recommendations to

protect against such attacks.

1. Introduction:
In this modern era of information and technology, a significant portion of the world's tech-

savvy individuals heavily rely on the Internet. The array of services offered by the Internet

has changed present civilization to climb its new and wider dimensions. It is a harsh reality

that our day-to-day existence would appear unfeasible without the Internet. The prevalence of

web sites and customized services in our daily lives cannot be overstated. This increased

reliance has also made them a prime target for hackers and attackers. These individuals are

constantly on the lookout for new techniques to infiltrate web applications and undermine the

advancements made in technology. XSS, in particular, stands out as one of the most critical

vulnerabilities found in web applications. XSS is one kind of application layer web attack in

which they try to inject malicious scripts to perform malicious actions on any trusted web

sites to fulfill only their nominal or bigger self-interest. According to Shalini and Usha (2011)

[1], it is called “cross-site” because it involves interaction between two web sites to achieve

the attacker's goal. In XSS, malicious code executes on the web browser side which badly

affects users. In normal cases, XSS executes when the web page is loaded or an associated

event occurs. XSS is not only embedded in JavaScript and HTML, but also in VBScript,

ActiveX, AJAX, action scripts like flash or any other browser executable scripting language

and mark-up language. For many reasons XSS can be used such as take over user’ account,

spread worms, Trojan horse, control access of browser, phishing, expose of the user’s session

cookie, redirect the user to some other page or site, modify presentation of content, bypass

restrictions, malware attacks & DoS attack, fake advertisement, click fraud, etc.



30VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

30

2. Subcategories of XSS Attacks
Following are the subcategories of XSS attacks which are used to redirect a particular victim
unwillingly:

 XSSR or CSSR

XSSR or CSSR, which stands for Cross Site Script Redirection, is a technique utilized

to redirect a user to a different webpage without their knowledge. An example of this is

when a user triggers a mouse over event and gets redirected to a harmful page. This

page might consist of a phishing template, browser attack code, or in certain cases,

exploit the data or JavaScript URI scheme for session hijacking.

 XSRF or CSRF

Cross Site Request Forgery, commonly known as XSRF or CSRF (sometimes called C-

Surf), is a method used to send automated input from the user to the target site. It is

worth noting that XSRF can be initiated by simply viewing a specially crafted image

tag. CSRF is also recognized as a one-click attack or session riding. According to

Kombade and Meshram (2012) [2], CSRF can be stored CSRF or Reflected CSRF.

Here, in both instances, the victim is redirected to a malicious web page without their consent.

These attacks are formed as either stored redirection attacks or reflected redirection attacks.

In stored redirection attacks, an attacker injects exploitable links or other contents in the web

application itself. In reflected redirection attacks, the attacker sends exploitable links or

contents to the victim via message post, e-mails, blog or instant messages. Stored redirection

attacks are more effective for attackers because the user who receives the exploitable links or

content is currently an authentic user performing web actions without suspicion. In contrast,

reflected redirection attacks may not always be successful, as users may not be actively using

the target system where the exploitable links and content are accessible. Earlier proposed

methodologies only protect against stored redirection attacks but do not protect against

reflected redirection attacks because source of attack is not fixed i.e. attack can be delivered

via e-mails, chat room, blog, etc.

3. Review of Literatures
Khade et al. (2023) [3] proposed mitigation of technique by incorporating machine learning

trained random forest algorithm to detect and prevent phishing attacks and CSRF



31VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

31

vulnerabilities in websites. This is a web browser extension which provides real-time

protection.

Pardomuan et al. (2023) [4] provides server-side XSS detection inspired by Google Chrome’s

XSS Auditor. 442 out of 500 payloads classified correctly by their model. They achieved

88.4% attack detection accuracy. They highlight that client-side prevention is prone to

bypasses due to browser inspection and adversary can manipulate victim to disable security

measures.

Lu et al. (2022) [5] discussed a fusion verification method which combines traffic monitoring

with XSS payload detection by utilizing machine learning. They proposed seven new payload

features to improve detection efficiency. This method increases accuracy and classifier's total

contribution rate.

Jabiyev et al. (2021) [6] proposed a defense approach to protect internal services from

Server-Side Request Forgery (SSRF) attacks in a cloud environment. To do so, they extend

the functionality of a popular reverse proxy application and deploy a set of vulnerable web

applications. They stated that developers have limited awareness about SSRF vulnerability.

Rankothge and Randeniya (2020) [7] introduced A new automated tool to identify and

counteract Cross-Site Request Forgery (CSRF) vulnerability. This tool incorporates a secret

token pattern to implement a reliable security mechanism on PHP-based web applications,

safeguarding content and functionalities without compromising the ability of authenticated

users to carry out web activities securely.

Meshram and Balani (2020) [8] described a server-side proxy to detect and prevent attacks in

a way that is transparent to users as well as to the web application itself and can be used to

secure a number of popular open-source web applications, without negatively affecting their

behavior. According to them, existing mitigation approaches are time-consuming and error-

prone.

Shaikh (2019) [9] studied that traditional anti-virus and anti-spyware approaches fail to detect

CSRF vulnerabilities and suggest urgency for appropriate detection and defense mechanisms

against CSRF. He used a methodical approach to investigate CSRF attacks. He introduced a



32VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

32

novel distinctive set of algorithms that use intelligent assumptions to detect and defend CSRF.

In this work, design details of a CSRF Detection Model (CDM), implantation and

experimentation results of CDM are elaborated to detect, predict and provide solutions for

CSRF attacks on contemporary web applications and web services.

Kavitha and Ravikumar (2015) [10] proposed an algorithm which protects against

clickjacking. This algorithm follows a regex approach. In this proposed architecture, authors

check all iframe available in a web page then it also checks IP address as well as domain. If a

user enters a URL, it checks against the iframe URL using regex. System also maintains a list

of DNS as DNSloopup. If more than 10 requests are found as bad requests, this user IP is

blocked.

Sentamilselvan et al. (2014) [11] proposed an algorithm for stored attacks and login CSRF

attacks. To prevent stored attacks, a pattern recognition method is used. To prevent login

CSRF, a 2-step verification method is used. For this verification, a random number is sent to

the user via mail or SMS by the server. Using this random number, one can view his/her

home page.



33VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

33

4.Attack Scenario

Figure: Scenario of request forgery attack

These attacks are divided into two parts: one is considered as a simple redirection attack and

another is considered as a request forgery attack. In a simple redirection attack, somehow the

attacker succeeds in adding a malicious URL reference in a given web page by using XSS.

Here, the victim is automatically redirected to a vulnerable site unwillingly by referring to

this malicious URL. This form of attack is also known as one-click attack. In request forgery

attack, if the victim is logged into some genuine website then a session is created to continue

transactions. Here, if the victim opens a new tab in the browser and tricks into the attacker's

website, a script is automatically executed which fetches the victim’s session id. Using this

cookie/session id, the attacker performs transactions through legitimate websites as if he is an

authorized user. This type of attack is also known as session riding attack. The given figure

showcases an instance of a request forgery attack.



34VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

34

5.Recommendations for preventing XSSR and XSRF attacks
To mitigate the risk of redirection attacks, website developers can employ a data table or

checklist that encompasses a comprehensive list of URLs supported by the website. This can

be accompanied by a series of preliminary checks, such as: 1) Taking a web page as input and

retrieving all the element tags associated with the given web page. 2) Verifying whether these

element tags contain attributes like 'href' or 'src'. If such attributes are not available then

continue with web page processing. If ‘href’ or ‘src’ attribute is identified then fetch attribute

value for and perform further examination. 3) Compare attribute values with data entries of

the data table. If a value match is found, the web page processing can proceed. 4) If its

attribute value does not match with the data table’s entries then notify the status as a

vulnerable request and the web link request is prohibited.

To protect against request forgery attacks, web developers must establish secure sessions.

Furthermore, they should verify specific information for every web page request. It is

essential to frequently change the session id as a precautionary measure. To enhance security,

consider implementing the following measures: 1) The user's identification, browser

information, and IP address should be stored as session variables. Encrypting these values

will enhance the security of the user's session. 2) In order to keep track of page loads

effectively, it is necessary to utilize the pageLoadCnt variable as a counter. This variable

should be initialized to zero for each page, and its value should be incremented by one only

when a registered user requests a web page that is restricted to them. 3) The value of the

pageLoadCnt variable should be checked for each page request made exclusively by

registered users. If the value of this variable surpasses 3, it becomes necessary to regenerate

the current session id and reset the counter variable back to zero. 4) Fetch the browser details

and IP address of the web user for each page that is being requested and save them in

temporary variables. 5) Evaluate the temp variables against the session variables. If details

are matched, set the isAttackFound variable to false. Otherwise set the isAttackFound

variable to true. If isAttackFound is true, treat the web page request as coming from an

unauthorized user and destroying the current session values. If isAttackFound is false,

consider the web page request as coming from an authorized user and grant access to the web

page.



35VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

35

6.Conclusion
Websites are designed to foster global connectivity, offer information and services, simplify

user tasks, and reduce transaction time and human effort. The World Wide Web (WWW)

serves as a crucial tool for establishing communication networks across the world. It is

essential that individuals do not abuse this platform for personal gain or malicious purposes.

Cross-Site Scripting is the simplest way for an attacker to gain a user's confidential

information. This paper aims to provide recommendations for the identification and

prevention of redirection attacks by closely monitoring URL requests and validating user

sessions. By ensuring the legitimacy of URL requests and session values, individuals can be

protected from unauthorized activities and potential security threats while using the internet.

Furthermore, a comprehensive defense strategy against XSS attacks includes server-side,

client-side, and proxy-based techniques, along with continuous user awareness campaigns.

7.References
[1] Shalini, S., & Usha, S. (July, 2011). Prevention Of Cross-Site Scripting Attacks (XSS)

On Web Applications In The Client Side. IJCSI International Journal of Computer
Science, Vol. 8(4), pp. 650-654.

[2] Kombade, R. D., & Meshram, D. B. (February 2012). CSRF Vulnerabilities and
Defensive Techniques. I. J. Computer Network and Information Security, 1, pp. 31-37.

[3] A. Khade, J. Iyer, M. Inbarajan and V. Yadav, Mitigating Cross-Site Request Forgery
Threats in the Web. (2023) 7th International Conference on Trends in Electronics and
Informatics (ICOEI), Tirunelveli, India, 2023, pp. 695-698, doi:
10.1109/ICOEI56765.2023.10125633.

[4] Chrisando, Ryan, Pardomuan., Aditya, Kurniawan., Mohamad, Yusof, Darus.,
Muhammad, Azizi, Mohd, Ariffin., Yohan, Muliono. (2023). Server-side Cross-site
Scripting Detection Powered by HTML Semantic Parsing Inspired by XSS Auditor.
Pertanika journal of science and technology, doi: 10.47836/pjst.31.3.14, pp. 1353-
1377.

[5] Jiazhong, Lu., Zhitan, Wei., Zhi, Qin., Yan, Chang., Shibin, Zhang. (2022). Resolving
Cross-Site Scripting Attacks through Fusion Verification and Machine Learning.
Mathematics, doi: 10.3390/math10203787.

[6] Bahruz Jabiyev, Omid Mirzaei, Amin Kharraz, and Engin Kirda. (2021). Preventing
server-side request forgery attacks. In Proceedings of the 36th Annual ACM
Symposium on Applied Computing (SAC '21). Association for Computing Machinery,
New York, pp. 1626–1635. https://doi.org/ 10.1145/3412841.3442036

[7] W. H. Rankothge and S. M. N. Randeniya, Identification and Mitigation Tool For
Cross-Site Request Forgery (CSRF). (2020). IEEE 8th R10 Humanitarian Technology
Conference (R10-HTC), Kuching, Malaysia, 2020, pp. 1-5, doi: 10.1109/R10-
HTC49770.2020.9357029.



36VNSGU Journal of Research and Innovation (Peer Reviewed)
ISSN:2583-584X
Volume No.2 Issue No.:4

36

[8] Ms. Diksha P. Meshram, Ms. Nisha Balani. (2019). Cross Site Request Forgery
Prevention System. International Journal of Future Generation Communication and
Networking Vol. 13, No. 2s, (2020), pp. 1169–1173.

[9] Roshan, Shaikh. (2019). Defending Cross-Site Request Forgery (CSRF) Attacks on
Web Applications. ETD Collection for Pace University. AAI13904278.

[10] Kavitha, D., & Ravikumar, S. (2015, June). Enhanced Vulnerability Analysis For
Clickjacking Web Attack And Providing Security Using Whitelisting URL Analyzer.
International Journal of Engineering and Computer Science (IJECS), 4(6), pp. 12652-
12657.

Sentamilselvan, K., Lakshmana Pandian, S., & Ramkumar, N. (November 2014). Cross Site
Request Forgery: Preventive Measures. International Journal of Computer Applications,
106(11), pp. 20-25.


	4.Attack Scenario
	5.Recommendations for preventing XSSR and XSRF attac
	6.Conclusion

